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5.1 Martingale and Examples

In our discussion of filtration and stopping times, there was no need to introduce a probability measure.

This becomes necessary now.

We start with a filtered probability space (Ω, F ,P), F = {Fn}n∈N0 . A sequence X = {Xn}n∈N0 of random

variables, adapted to F and integrable (E|Xn|< ∞, ∀n ∈ N0) is called martingale (resp., submartingale,

supermartingale) if

E(Xm|Fn) = Xn (resp, ≥, ≤) (5.1)

holds P-a.e. for every n ∈ N0, m ∈ N0.

By the tower property of conditional expectations, it is enough to verify (5.1) for m = n + 1.

It is hard to believe, yet true, that you can build almost the entire edifice of Probability Theory

based on such a simple property as (5.1).

It is a direct consequence of (5.1) that we have

E(Xm) = E(Xn) (resp, ≥, ≤)

for a martingale (resp., submartingale, supermartingale): Conservation Law.

Here are some examples.

LÉVY Martingale: Xn = E(ξ|Fn), n ∈ N0 with ξinL1.
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Random Walk: Suppose ξ1, ξ2, ... are independent, integrable with E(ξj) = α, ∀j ∈ N and define

S0 = 0; Sn =
n∑

j=1
ξj (n ∈ N).

Then Xn = Sn − αn, n ∈ N0 is a martingale. And if α = 0, then so is M0 = 1; Mn = 1
αn ξ1...ξn, n ∈ N.

WALD Martingale: In addition, suppose the ξ1, ξ2, ... are also identically distributed, with moment gener-

ating function

ϕ(θ) := E(eθξ1), θ ∈ R

well-defined. Then

W0 = 0; Wn = eθSn

ϕn(θ) ; n ∈ N

is a martingale.

Convexity: Suppose X = {Xn}n∈N0 is a martingale (resp., submartingale) with E|f(Xn)|< ∞, ∀n ∈ N0

for some f : R → R convex (resp., convex increasing). Then f(X ) is a submartingale.

5.2 Fundamental Results

Here is an important result. Its continuous-time analogue is fundamental.

DOOB Decomposition: Every submartingale X = (Xn)n∈N0 can be written as Xn = Mn + An , n ∈ N0 with

M = {Mn}n∈N0 a martingale and A = An nondecreasing:

0 ≤ A0 ≤ A1 ≤ A2 ≤ ... ≤ An ≤ An+1 ≤ ...

This A can actually be chosen predictable; and with this proviso, the decomposition is unique.

Proof: Define A0 := 0, An+1 :=
n∑

k=0
[E(Xk+1|Fk) − Xk] (n ∈ N0) obviously increasing, predictable. Then

Mn := Xn − An, n ∈ N0 is a martingale; indeed, we have Mn+1 − Mn = Xn+1 − E(Xn+1|Fn).

With two such decompositions we have Xn = M ′
n+A′

n = Mn”+An”, n ∈ N0, so Zn := M ′
n−Mn” = An”−A′

n,

n ∈ N0 is both predictable and a martingale; therefore constant. Bust this constant is Z0 = A0” − A′
0 =

0 − 0 = 0; uniqueness.

Without predictability, uniqueness fails. We shall see this very vividly when we study square-integrable
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martingales.

Here is a very important notion, that will stay with us from now on. One of its incarnations is the stochastic

integral of the Itô Calculus.

Transform: For random sequences M = {Mn}n∈N0 , Θ = {θn}n∈N0 adapted and predictable, respectively, we

call the sequence I = Θ · M, defined by

I0 = 0; In =
n∑

k=1
θk(Mk − Mk−1), n ∈ N;

the transform of M by Θ.

Proposition 5.1 (Stability of Martingales under Predictable Transform) With M, Θ above, sup-

pose E(|θk(Mk − Mk−1)|) < ∞, ∀k ∈ N. Then I = Θ · M is a

• martingale, if M is a martingale;

• supermartingale (resp, submartingale), if Θ ≥ 0 and M is a supermartingale (resp, submartingale).

Proof: Follows directly from

E(In+1|Fn) − In = E[θn+1(Mn+1 − Mn)|Fn] = θn+1E[(Mn+1 − Mn)|Fn].

Proposition 5.2 (Stability of Martingales under Stopping) If (Xn)n∈N0 is a (super)(sub)martingale,

then so is (XT ∧n)n∈N0 for any stopping time T .

Proof: One way to stop a sequence, is to ”freeze” its future increments:

XT ∧n = X0 +
n∑

k=1
(Xk − Xk−1) IT ≥k︸ ︷︷ ︸

θk

, n ∈ N0.

But this is the transform of X via the sequence Θ = {θk}k∈N with 0 ≤ θk := IT ≥k = 1 − IT <k = IT ≥k−2

predictable! The claim follows from the precious proposition.
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5.3 Optimal Sampling

We have seen already that a martingale (Xn)n∈N0 has a constant expectations:

E(Xn) = E(X0), ∀n ∈ N.

This is, in a very real sense, a conservation law.

The question then arises: does this property extend to stopping times? That is, if T is a stopping time if

the underlying filtration for with E(XT ) can be defined well, do we have

E(XT ) = E(X0)? (5.2)

It does not take long, to realize that this does not always hold. Take, for instance, the simple symmetric

random walk on the integer lattice, started at X0 = 0, and wait until the first time T it hits the level 1. We

have seen already (and we shall prove again presently, by different techniques) theta P(T < ∞) = 1, thus

P(XT = 1) = 1. But then 1 = E(XT ̸= E(X0) = 0), defeating the conjecture.

It becomes clear now that, if we want (5.2) to work, we need to impose conditions. Either on

the stopping time, or on the martingale, or on both.

Theorem 5.3 (DOOB’s Optimal Sampling (Baby OST)) On a given filtered probability space, con-

sider a supermatingale X = {Xn}n∈N0 and a stopping time T. We have then

E(XT ) = E(X0),

provided that either

(i) T is bounded (i.e., P(T ≤ m) = 1, for some m ∈ N); or

(ii) X is bounded (i.e., P(|XN (ω) ≤ K|, ∀n ∈ N0) = 1 for some k ∈ (0, ∞)); or

(iii) E(T ) < ∞ and X has bounded increments (i.e., P(|Xn(ω) − Xn−1(ω)|≤ K, ∀n ∈ N) = 1).

And if X is a martingale, the display becomes E(XT ) = E(X0).

Proof: From the Proposition (5.2), we have for every n ∈ N:

E(XT ∧n − X0) ≤ 0. (5.3)
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For (i), we can take n = m and be done.

For (ii), we can let n → ∞ in (5.3) and appeal to the DCT.

And for (iii), we write

|XT ∧n − X0|≤
T ∧n∑
k=1

|Xk − Xk−1|≤ KT, P-a.e.;

and because E(T ) ≤ ∞, the DCT applies again, and leads to the result upon letting n → ∞, and leads to

the result in (5.3).

There is no telling how for one can go using just this very humble result; there are fancier versions, of course,

but this is already a gem.


